# Bi-directional Interrogation of Image Volumes and Segmented Cells With 3D Tissue Cytometry

Seth Winfree and Tarek Ashkar

Indiana University School of Medicine, Medicine, Division of Nephrology IU/OSU Tissue Interrogation Site, KPMP

### Era of precision medicine

#### New Paradigm Shift in Treatment

Transitioning From the 'one-size-fits-all' to 'precision medicine' model with multi-level patient stratification.



Forbes March 2017

### "Small" changes can have "big" effect

"Small" changes can cause "big" effects



Changes can be a needle in a haystack



- High resolution methods with high sensitivity
- Ability to analyze multiparametric datasets
- Look for small changes unique for patient and for disease

### Why 3D imaging? Tissue complexity



**DAPI MHCII** F-Actin



### Tissue complexity, 3D and large scale

# Flow Cytometry approach is robust...Can we do something similar in intact kidney tissue?



### 3D cytometry-segmenting individual cells



Image data in 3D

### 3D cytometry-single cell analysis in 3D



Single cells segmented in 3D

Image data in 3D

Classify and count

### Designing an approach for tissue cytometry



Winfree S, Ferkowicz MJ, Dagher PC, Kelly KJ, Eadon MT, Sutton TA, Markel TA, Yoder MC, Dunn KW, El-Achkar TM. Large-scale 3-dimensional quantitative imaging of tissues: state-of-the-art and translational implications. Transl Res. 2017 Nov;189:1-12. doi: 10.1016/j.trsl.2017.07.006. Epub 2017 Jul 22. Review. PubMed PMID: 28784428; PubMed Central PMCID: PMC5659947.

### Volumetric Tissue Exploration and Analysis: VTEA



Winfree S, Khan S, Micanovic R, Eadon MT, Kelly KJ, Sutton TA, Phillips CL, Dunn KW, El-Achkar TM. Quantitative Three-Dimensional Tissue Cytometry to Study Kidney Tissue and Resident Immune Cells. J Am Soc Nephrol. 2017 Jul;28(7):2108-2118. doi: 10.1681/ASN.2016091027. Epub 2017 Feb 2. PubMed PMID: 28154201; PubMed Central PMCID: PMC5491289.

### 3D tissue cytometry using VTEA





Winfree S, Khan S, Micanovic R, Eadon MT, Kelly KJ, Sutton TA, Phillips CL, Dunn KW, El-Achkar TM. Quantitative Three-Dimensional Tissue Cytometry to Study Kidney Tissue and Resident Immune Cells. J Am Soc Nephrol. 2017 Jul;28(7):2108-2118. doi: 10.1681/ASN.2016091027. Epub 2017 Feb 2. PubMed PMID: 28154201; PubMed Central PMCID: PMC5491289.

# Application to human biopsies in a clinical setting

#### VTEA B Patient A Patient B Gate1 Gate1 0.31% 2.04% MPO MPO Gate2 Gate2 0.10% 0.17% **CD45R** D (uim/lm) 100 eGFR ( 50-MDRD ( -O- Patient A Patient B 20 40 60 80

Time (months)

Winfree S, Khan S, Micanovic R, Eadon MT, Kelly KJ, Sutton TA, Phillips CL, Dunn KW, El-Achkar TM. Quantitative Three-Dimensional Tissue Cytometry to Study Kidney Tissue and Resident Immune Cells. J Am Soc Nephrol. 2017 Jul;28(7):2108-2118. doi: 10.1681/ASN.2016091027. Epub 2017 Feb 2. PubMed PMID: 28154201; PubMed Central PMCID: PMC5491289.



### Marker complexity structures and cells of interest



DAPI F-Actin AQP2 AQP1

Winfree S, Ferkowicz MJ, Dagher PC, Kelly KJ, Eadon MT, Sutton TA, Markel TA, Yoder MC, Dunn KW, El-Achkar TM. Large-scale 3-dimensional quantitative imaging of tissues: state-of-the-art and translational implications. Transl Res. 2017 Nov;189:1-12. doi: 10.1016/j.trsl.2017.07.006. Epub 2017 Jul 22. Review. PubMed PMID: 28784428; PubMed Central PMCID: PMC5659947.

### Multivariate results



#### Human nephrectomy section

Quantitative Three-Dimensional Tissue Cytometry to Study Kidney Tissue and Resident Immune Cells. Winfree S et al. J Am Soc Nephrol. 2017 Jul;28(7):2108-2118.

### Tissue "Big" data exploration, analysis and interpretation in one workflow



Unsupervised analysis

### VTEA in use



### Signatures across approaches and modalities





#### sc/snRNASeq





# Popup Query From 3D image volume to omics



**DE Analysis** GeneX GeneY

**Metabolomics** MetaboliteX MetaboliteY

... **LMD transcriptomics** GeneX GeneY



**DE Analysis** GeneX GeneY

Metabolomics MetaboliteX MetaboliteY

**LMD transcriptomics** GeneX GeneY

### Localizing -omics

From transcript to 3D image volume

### sc/snRNASeq



### Imaging



- Identify scRNASeq populations
  - Markers and types
- Correlate scRNASeq and imaging populations



DAPI Phalloidin THP AQP1 MPO CD68 CD3

DAPI Gate

### Making a model...across scale

#### Individual (patients)

### Model









egment Tissue

### Modeling the glomerulus

#### Sections-sparse data







## Conclusions

 Human kidney biopsies can now be interrogated on a large scale at high resolution using 3D fluorescence imaging

cortex

- Efficient quantitative analyses on large 3D volumes is possible using tools such as VTEA
- VTEA analysis can link 3D image analysis to disease pathobiology in situ, and can be used for precision medicine applications
- Multivariate analyses has potential to mine large, complex data and provide an unbiased approach to discover novel disease signatures.
- Integrating imaging data with –omics will further expand signature of disease state
- A model "average" kidney may be determined from sparse human biopsy data

### Acknowledgements

IU KPMP:

Tarek Ashkar Ken Dunn Michael Ferkowicz Pierre Dagher Michael Eadon Daria Barwinska Timothy Sutton Katherine Kelly

Funding:

DiaComp Pilot and Feasibility Program (NIDDK) KPMP UG3 DK114923 (NIDDK) P30 DK079312 (NIDDK) P01 DK056788 (NIDDK)