Kidney Metadata and Ontology Design (HuBMAP)

Katy Börner, Leonard Cross, <u>Samuel H. Friedman</u>, Randy Heiland, Bruce Herr II, <u>Paul Macklin</u>, Lisel Record, <u>Ellen</u> <u>Quardokus</u>, <u>James Sluka</u>, Griffin Weber

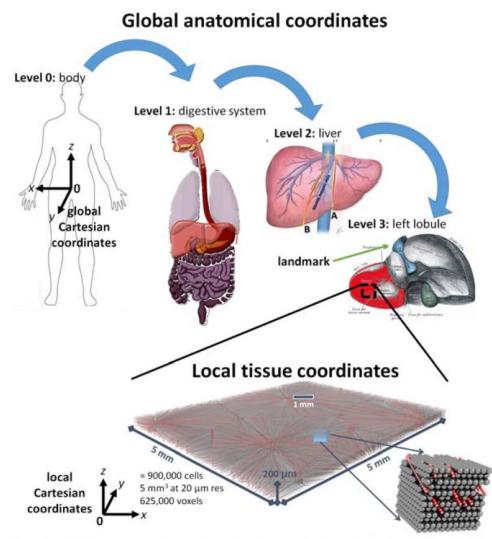
<u>underlined</u>: most directly involved in ontology development

Intelligent Systems Engineering Indiana University

May 9, 2019

Motivation

Mapping Components (MC): Spatial maps of biomolecular data


Given anatomical and molecular data, develop and validate:

1) Terminologies/Ontologies (Semantics)

- Reference concepts, e.g., organs, organ parts, cell types, cell states
- Fiduciary concepts: Well-defined landmarks that can be provided by TMCs and used by MC to spatially orient data with respect to 3D structures
- 2) 3D Spatial Models interlinked with terminology/ontology
- Across levels (gross anatomy/organ, tissue, cell level) using hierarchical containment to localize the sample within the body
- Make landmarks visible in 3D models

3) Interface for semantic and spatial search, filter, review, download of data.

- Use ontology for query expansion (elastic search), semantic browsing, and as controlled vocabulary (e.g., turning on/off male/female or different cell states).
- Use 3D models for spatial browsing, confirmation of proper tissue registration, exploring cell context, etc.

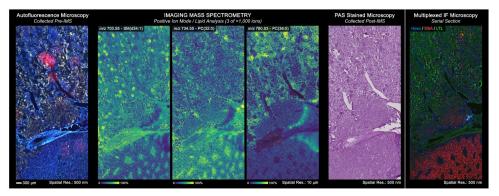


Fig. 5. CCF concept, navigating through the global anatomical coordinate system to insert a synthetic tissue sample (from PhysiCell⁴) into the left liver lobe with a local coordinate system.

We must plan for heterogeneous data

Kidney: Jeff Spraggins et al., VU

See data on Globus, BIOMIC_patient-64354

Clinical and Spatial Metadata (21 rows)

Cell	Types,	on	right
------	--------	----	-------

Cell States (9 rows)

Cell states	Subset A
Proliferating cells	S-phase
	G2/M
Cell cyle arrest	G0
	G1/S
	G2/M
	G2/M

Cell type	Subset A	Subset B	Subset C
Tubular Epithelium	Proximal tubular cells	S1	
		S2	
		S3	
	Loop on Henle	Thin descending limg	
		Thin ascending limb	
		Thick limb	medullary
			cortical
		Macula Densa	
	Distal convoluted tubule	2	
	Connecting segment		
	Collecting duct	Principal cells	
		Intercalated cells	Type A
			Type B
Glomerulus	Epithelium	Visceral	
		Parietal	
	Mesangial cells		
Vasculature	Endothelium	Glomerular	
		Peritubular	
		Lymphatic	
	Pericytes		
	Juxta Glomerular Cells		
Interstitium	Fibroblasts	Myofibroblasts	
		EPO producing cells	
		Medullary fibroblasts	
	Mononuclear cells	Resident macrophages	
		Dendritic cells	
	Lymphocytes	T cells	
		B cells	
		NK cells	

Heart: Shin Lin, UW

Year 1: Tissue data for 1-2cm cubed volumes from 9 sites for 1 heart from 1 individual.

Data Dictionary (115 rows)

Field # Sort Field Label Sort	Field Name Sort	Field Units F	Field Data	Lookup Ta	Low Value	High Value	Valid val	ue IsNullable	Parent Fiel Pa	rent Fiel	Can Child b	ReadOnly Sort
9 Donor //ABO:	abo		char(3)	lkup_abo				TRUE				FALSE
10 Donor //Date of birth:	dob		datetime					TRUE				FALSE
11 Donor //Gender:	gender		har(1)	lkup_gende	er		M,F	TRUE				FALSE
12 Details //Age:	age_in_months	s	smallint		0	1188		TRUE			FALSE	FALSE
13 Details //Age Unit:	age_unit	0	char(1)	lkup_age_u	unit		M,Y	TRUE	age_in_mont	hs		TRUE
14 Details //Height:	hgt_cm	cm d	decimal(5,	2)	1	241.3		TRUE				FALSE
15 Donor hgt_ft //	hgt_ft	ft i	nt		0	7		TRUE				TRUE
16 Donor hgt_in //	hgt_in	in i	nt		0	11		TRUE				TRUE
17 Details //Weight:	wgt_kg	kg d	decimal(7,	4)	0.454	294.835		TRUE				FALSE
18 Donor wgt_lb //	wgt_lb	lbs o	decimal(3,	0)	2	650		TRUE				TRUE
19 Donor //Ethnicity/race:	race	Ł	oigint	lkup_race_	subcat_mul	ti		FALSE				FALSE
30 Details //History of diab	e hist_diabetes	S	mallint	lkup_histdi	ab_dur			TRUE				FALSE
31 Donor //History of canc	e hist_cancer	s	smallint	lkup_histca	ancer_site			TRUE			FALSE	FALSE
32 Donor History of cancer	cancer_oth_ostxt	N 1	/archar(50))	1	50		TRUE	hist_cance	999		FALSE
33 Details //History of hype	er hypertension	s	mallint	Ikup histh	pe dur			TRUE			FALSE	FALSE

Cell Types (14)

endothelial cells arterial

	arterial	
	capillary	
	venous	
	lymphatic	
cardiomyo	cytes	
	atrial	
	ventricular	
	nodal	
fibroblasts		
	fibroblasts	
	myofibrob	asts
immune ce	ells	
	macrophag	ges

Data

Kidney: Jeff Spraggins et al., VU

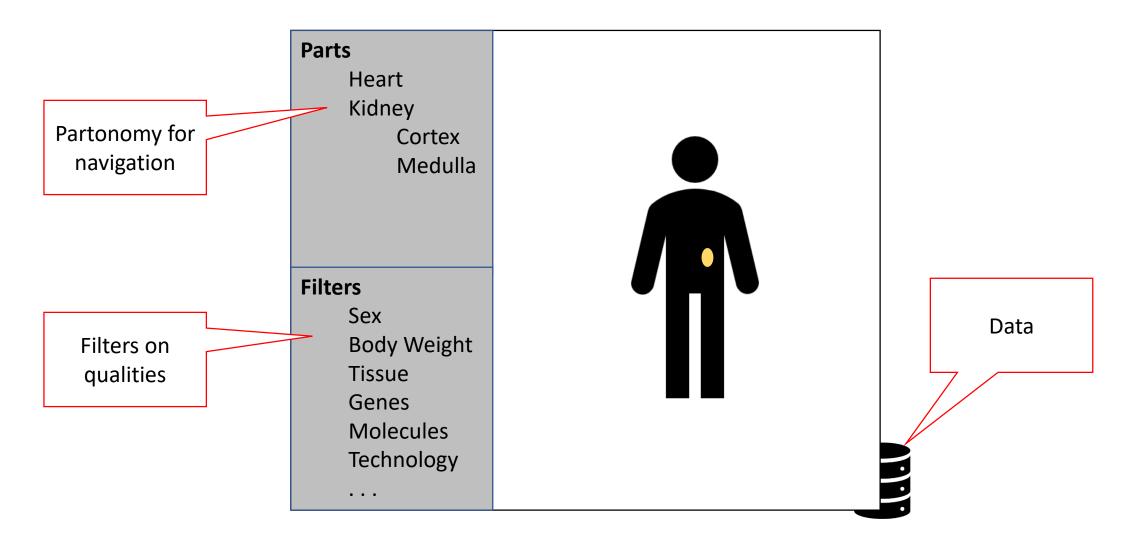
Clinical and Spatial Metadata (21 rows)

Sample Number:	20
Patient Number:	64354
Procedure ID:	66598
Date:	1/30/2019
Age:	38
Gender:	Female
Race:	White
Height:	165.1 cm
Weight:	115.2 kg
BMI:	42.3
Comorbidities:	Obesity
Type of Procedure:	Total Nephrectomy
Indications for Procedure:	Renal tumor
Laterality:	Left
Tissue Type:	kidney
Dimensions (mm):	L: 19 x W: 13 x H: 7
Anatomical Landmark:	Lower Pole
Distance from Tumor:	7 cm
Sample Processing:	Frozen
Method of Freezing:	Dry Ice/Isopentane Slurry
Embedding Media:	СМС

165.1 cm

Heart: Shin Lin, UW

Data Dictionary (115 rows)


Field # Sort	Field Label Sort	Field Name Sort	Field Units	Field Data	Lookup Tal	Low Value	High Value	Valid valu
9	Donor //ABO:	abo		char(3)	lkup_abo			
10	Donor //Date of birth:	dob		datetime				
11	Donor //Gender:	gender		char(1)	lkup_gende	er		M,F
12	Details //Age:	age_in_months		smallint		0	1188	
13	Details //Age Unit:	age_unit		char(1)	lkup_age_u	unit		M,Y
14	Details //Height:	hgt_cm	cm	decimal(5,	2)	1	241.3	
15	Donor hgt_ft //	hgt_ft	ft	int		0	7	
16	Donor hgt_in //	hgt_in	in	int		0	11	
17	Details //Weight:	wgt_kg	kg	decimal(7,	4)	0.454	294.835	
18	Donor wgt_lb //	wgt_lb	lbs	decimal(3,	0)	2	650	
19	Donor //Ethnicity/race:	race		bigint	lkup_race_	_subcat_mu	lti	
30	Details //History of diabe	hist_diabetes		smallint	lkup_histdi	ab_dur		
31	Donor //History of cance	hist_cancer		smallint	lkup_histca	ncer_site		
32	Donor History of cancer	cancer_oth_ostxt		varchar(50))	1	50	
33	Details //History of hype	hypertension		smallint	lkup histhy	/pe dur		

Please complete **TMC Landmarks Survey** at https://goo.gl/forms/x9F8cP1GlzprDxbl2

(complete one survey per organ)

Jeff invited feedback on current fields and format.

Goal: Facilitate navigation of multiscale data

Overall CCF Approach

CCF Ontology: some guiding principles

- Reuse existing <u>ontologies</u> and <u>data formats</u> developed for projects similar to HuBMAP to the greatest extent possible
 - GUDMAP / RBK
 - Human Cell Atlas
 - ...
- Reuse domain-specific ontologies and data formats
 - OME-Tiff (Open Microcopy Community advanced image format)
 - MIAME (Minimum Information About a Microarray Experiment)
 - ...
- Leverage HuBMAP domain expertise!
 - Each TMC is an expert in its organ. Capture this in the organ-specific ontologies.
- Use a standard Ontology format and development tools
 - We will use OWL
 - Include test cases in the ontology itself (e.g. both A-box and T-box) for testing, validation and demonstration purposes.
- Cross-link with existing ontologies as much as possible
- May need separate partOf (or class/subclass) trees for **simplified navigation** in GUI.

CCF: Source Ontologies

Anatomic/Phenotypic

- Uberon
- Foundational Model of Anatomy (FMA) (has anatomical terms NOT in Uberon)
- Human Phenotype Ontology (HPO)
- Phenotype and Trait Ontology (PATO)
- Organ specific: Kidney Tissue Atlas Ontology (KTAO) and LungMAP

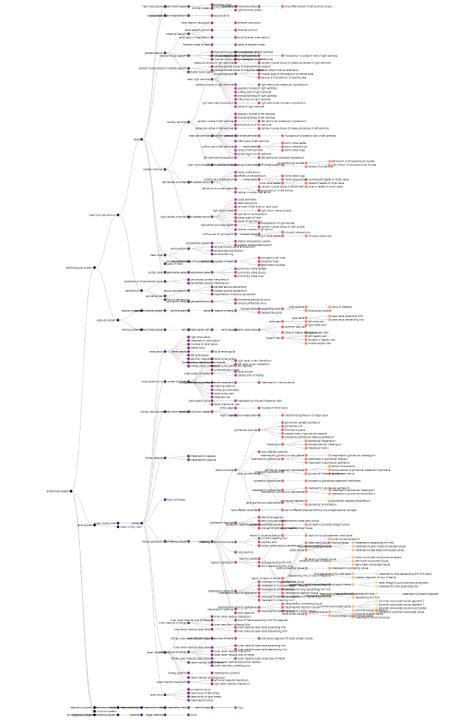
Tissue/Data Collection

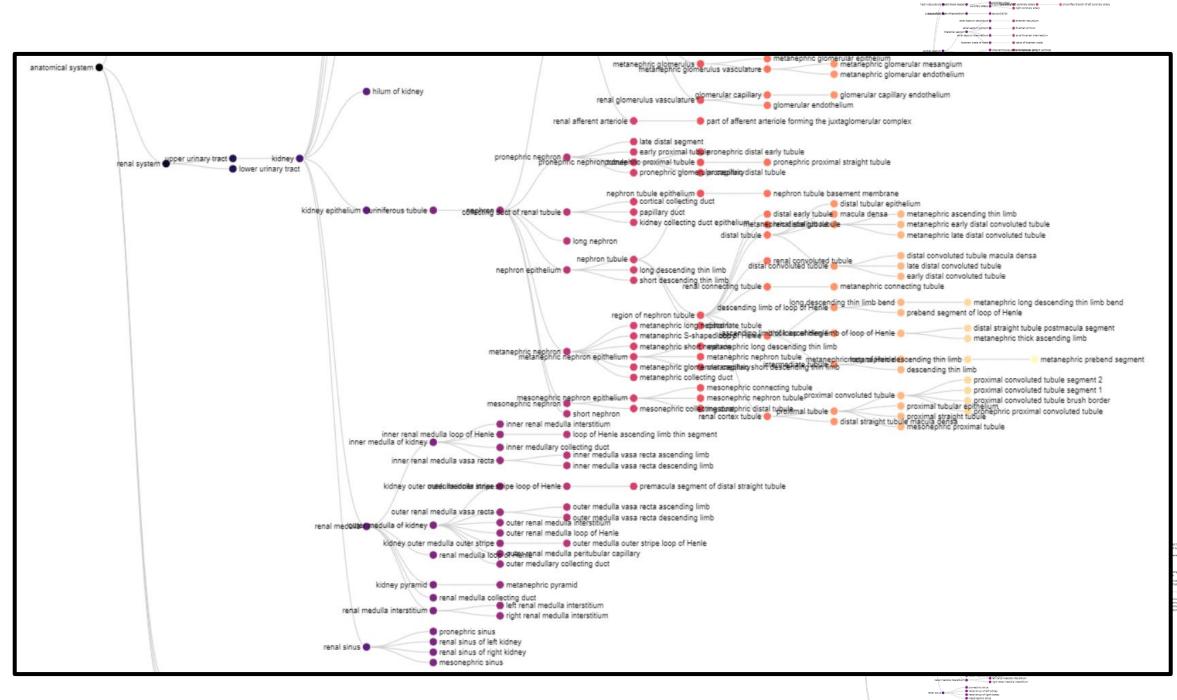
- Biological Spatial Ontology (BSPO)
- Ontology of Biomedical Investigations (OBI)
- EDAM (Bioinformatics concepts)

(Sub-)Cellular

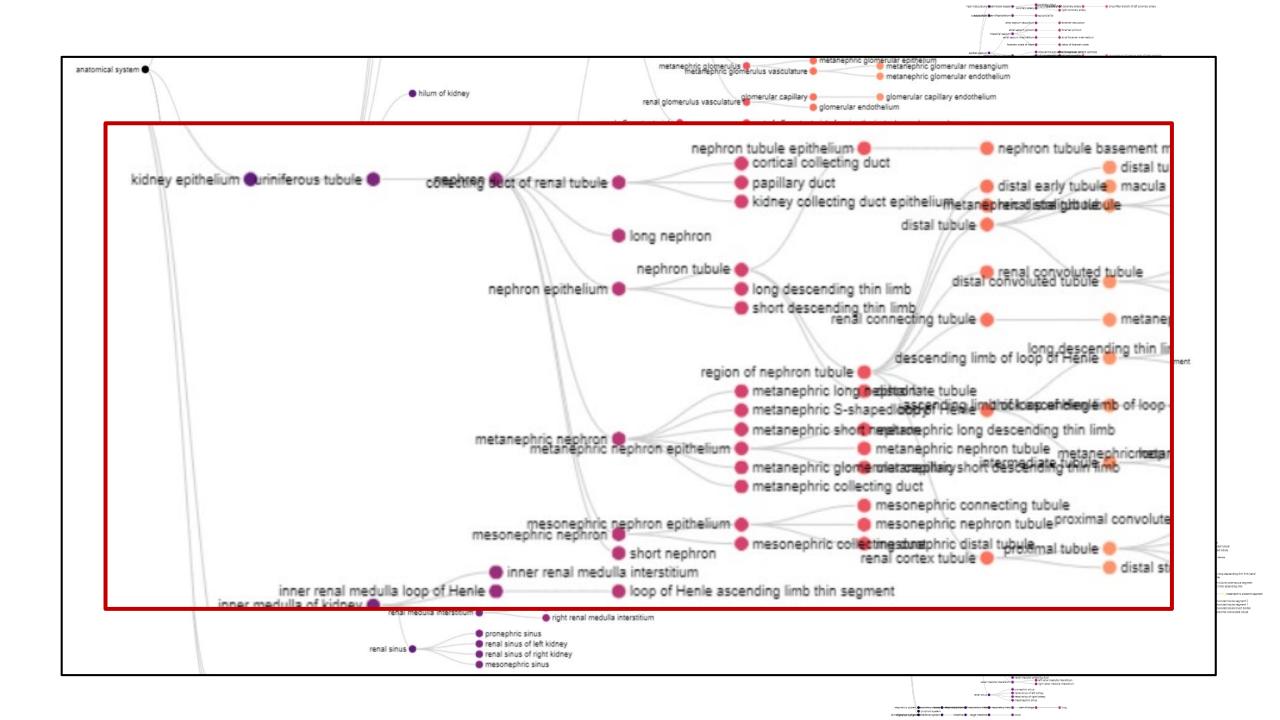
- Cell Ontology (CL)
- Gene Ontology (GO)
- Chemical Entities of Biological Interest (ChEBI)
- RNA Ontology (RNAO)
- Protein Ontology (PR)
- Cell Behavior Ontology (CBO)

Metadata


- Basic Formal Ontology (BFO)
- Information Artifact Ontology (IAO)
- Ontology of units of Measure (OM)
- Provenance, Authoring and Versioning ontology (PAV)
- VIVO (Identifying researchers)


MeSH and NCI Thesaurus

Current CCF Ontology:

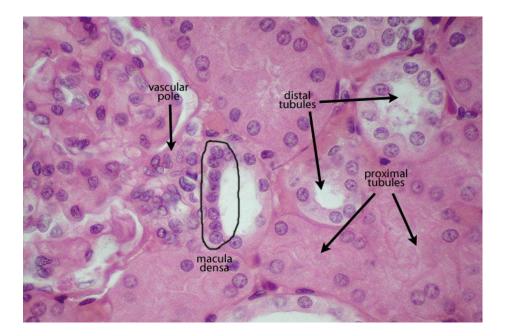

- Use Uberon and user-supplied tables of terms to create a SLIM ontology
- Users (initially TMCs) can request missing terms as needed
- "partOf" and other partonomy terms used to help relate concepts
 - Requires domain expertise!
 - Individual TMCs will need to pitch in for their specific organs to refine
- <u>Click here to visualize the current CCF ontology</u>

ntory system **Conjuntary against & detailably david \$** respiratory traditional respiratory traditional part of long

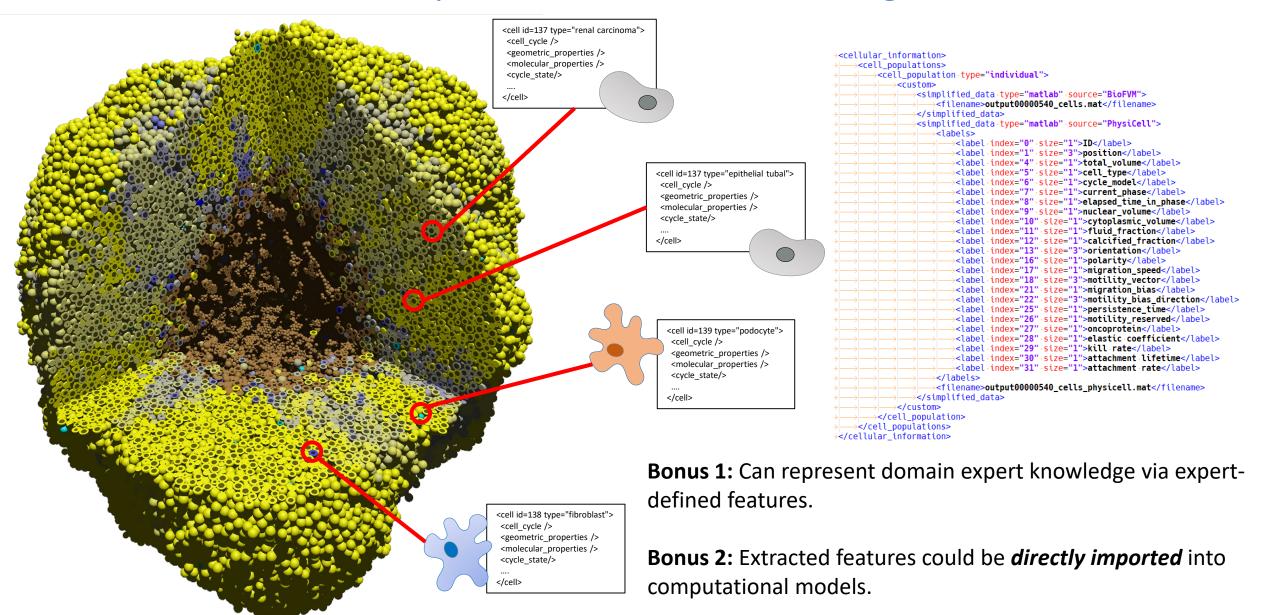
Jyrnphold system
 Mestine
 Intestine
 Intestintestine
 Intestintestine
 Intestine
 Intestine

Data Formats

IU CCF Initial (v0.5.0) Image Formats


• **Basic image**: OME-Tiff

- 2D to 4D data (includes movies)
- more than three "color channels"
- More flexible "color" data format (int, float, etc.)
- <u>**Regions of images</u>**: SVG with annotations (aligned with a particular OME-Tiff)</u>
- **Volumetric** (e.g., computed tomography, MR, ultrasound, ...)
 - Data normally represented as volumes or surfaces


More data

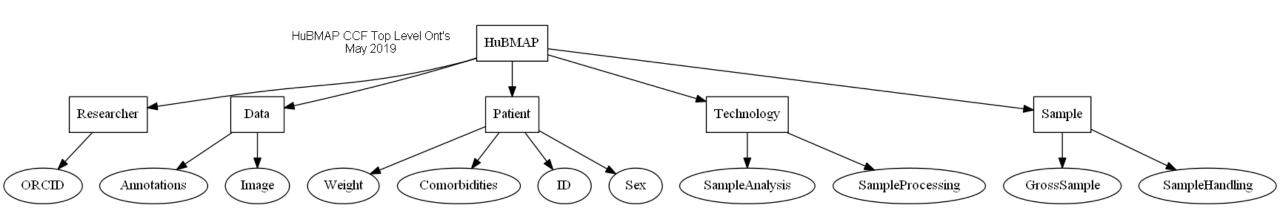
• RNAseq and other OMICS data

- Challenges in:
 - Data formatting and visual representation of spatial data
 - Extracting *knowledge* from complex, often noisy data
 - Harmonizing data sets from different platforms
 - Validating and benchmarking
- Extracted information
 - Segmented cells and structures
 - SVG overlays
 - e.g., cell apical surfaces, glomerulus podocyte, renal corpuscle, Bowman's space, ...
 - Vectorized annotations (e.g., as in MultiCellDS see below)
 - Multiplexed and massively multichannel imaging (e.g., MALDI)
 - Associate vectors of measurements with segmented structures
 - Additional ontology-driven annotations for the structures
 - e.g., cell type and state by Cell Ontology ...
 - Cell morphometric annotations ...

Vectorized annotations of extracted cell features: a step from data towards knowledge

Metadata

Some Key Types of Metadata:


- Biological (patient specific data)
 - May include patient differentia such as disease state
- Technological (analysis tools; MS, immunohistochemical, RNAseq, ...)
 - Where possible, respect and reuse any technology domain-specific standards, ontologies, etc.
 - Will often include the biological results (e.g., gene expression levels)
- Interpretive
 - Summary of findings, e.g., conversion of gene expression lists into list of highly impacted pathways
 - Algorithms and software used in interpretation and analysis
- Provenance
 - Who processed and analyzed samples
 - Points of contact (to answer questions on the samples and analyses)
 - Can be important for QC and account
- Use metadata
 - Licenses, citation information,

Many data and metadata types and files

- Patient
- Sample
- Analysis Technology
- Results

. .

• Researcher

Example: Metadata for Similar Large-Scale Data & Imaging Projects

GUDMAP:

GUDMAP/RBI	(Resources Search + Create + Dashboards (requires login) + Help + Feedback		Log In
Gene			差 Export 🗸 📕 Permalink
V Present	Search Q 25 items per page •		-
Show Details	Clear All X Species: Homo sapi X Any Data : Pres X Imaging Data : Pres		
✓ Imaging Data	Displaying 25 of 70 Records		
Present Not Present	View Gene ID \$\$\$ INCBI Symbol \$\$\$ Species \$\$\$ Description \$\$\$\$ Exp	ression Scored 🛔	Array Data 11 Imaging Data
Show Details	58 ACTA1 Homo actin, abha 1, skeletal sapiens muscle	9 <u>-</u>	Fetal 18wk Fetal 18wk Fetal 13wk Fetal 14wk
Scored Expre Scored Expre	RID: Persistent citable resource ident	ifier	Fetal 11 vk
Assay Type	Imaging Data		Fetal 18wk
Anchor Gene Marker Gene	Genes		
Marker Gene	Species		<u>more</u>
	Stage		
	Anatomical Sources		
	Assay Type		
	Preparation		
	Principle Investigator	Kidne	ey Tissue Atlas Ontology
		from	КРМР
		_	

Human cell Atlas, SPARC (informed by BIDS)

Structured Datasets (like BIDS) provide...

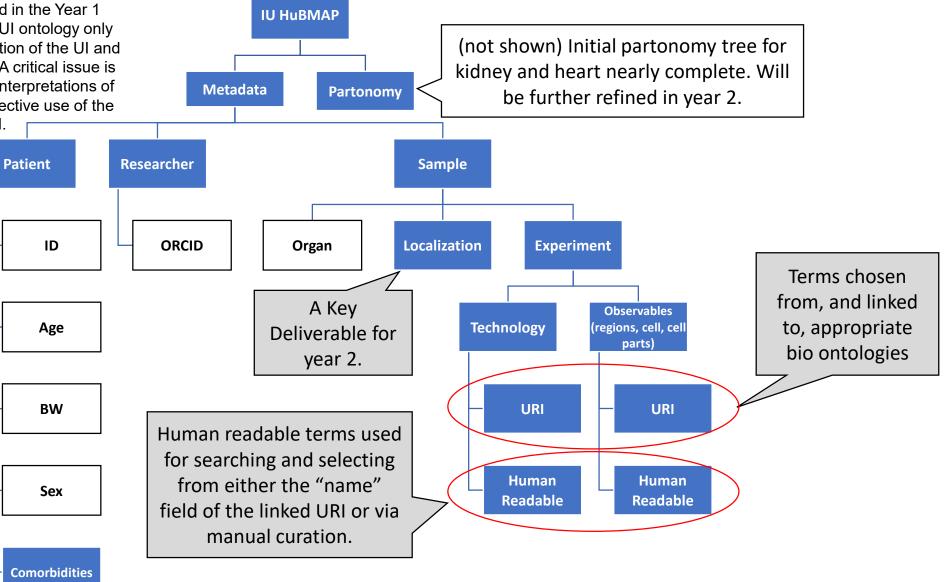
- A convention for organizing data files into folders
- A set of descriptive files that contain information on subjects, experimental information, data set descriptions
- A set of naming conventions for files
- A means to extend the core structure to accommodate most data acquisitions

Challenge: Inconsistent metadata specifications

Kidney: Jeff Spraggins et al., VU

Clinical and Spatial Metadata (21 rows)

Sample Number:	20		
Patient Number:	64354		
Procedure ID:	66598		
Date:	1/30/2019		
Age:	38		
Gender:	Female		
Race:	White		
Height:	165.1 cm		
Weight:	115.2 kg		
BMI:	42.3		
Comorbidities:	Obesity		
Type of Procedure:	Total Nephrectomy		
Type of Flocedure.	rotar Nephrectority		
Indications for Procedure:	Renal tumor		
Indications for Procedure:	Renal tumor		
Indications for Procedure: Laterality:	Renal tumor Left		


Heart: Shin Lin, UW

Data Dictionary (115 rows)

Field # Sort	Field Label Sort	Field Name Sort	Field Units	Field Data	Lookup Tal	Low Value	High Value	Valid va
9	Donor //ABO:	abo		char(3)	lkup_abo			
10	Donor //Date of birth:	dob		datetime				
11	Donor //Gender:	gender		char(1)	lkup_gende	er		M,F
12	Details //Age:	age_in_months		smallint		0	1188	
13	Details //Age Unit:	age_unit		char(1)	lkup_age_u	unit		M,Y
14	Details //Height:	hgt_cm	cm	decimal(5,	2)	1	241.3	
15	Donor hgt_ft //	hgt_ft	ft	int		0	7	
16	Donor hgt_in //	hgt in	in	int		0	11	
17	Details //Weight:	wgt_kg	kg	decimal(7,	4)	0.454	294.835	
18	Donor wgt_lb //	wgt_lb	lbs	decimal(3,	0)	2	650	
19	Donor //Ethnicity/race:	race		bigint	lkup_race_	_subcat_mu	lti	
30	Details //History of diabe	hist_diabetes		smallint	lkup_histdi	ab_dur		
31	Donor //History of cance	hist_cancer		smallint	lkup_histca	ncer_site		
32	Donor History of cancer	cancer_oth_ostxt		varchar(50)	1	50	
33	Details //History of hype	hypertension		smallint	lkup_histhy	/pe_dur		

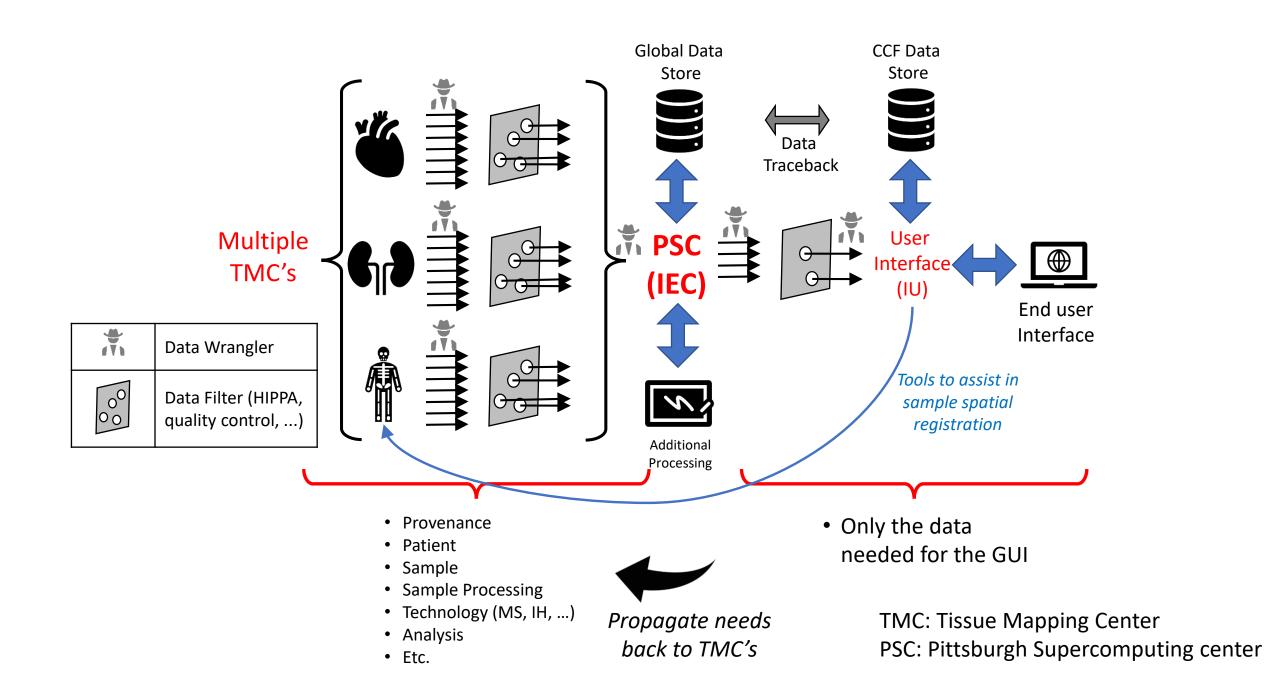
AMIS (absolute minimal information solution)

Figure 2: Partial AMIS ontology for the CCF UI. White boxes indicate metadata terms included in the Year 1 metadata ontology. Note that the CCF UI ontology only covers the CCF data needed for operation of the UI and that is reflected in the ontology above. A critical issue is that human understandable biological interpretations of the various data sets is required for effective use of the image datasets by end users via the UI.

IU CCF Initial (v0.5.0) Patient Metadata

Column Header	Data Type	Comments		
HuBMAP Sample ID	string	assigned by PSE/IEC		
HuBMAP Patient Number	string	ussigned by PSE/TEC		
Source Sample ID	string	assigned by clinical unit,		
Source Patient Number	string	deidentified.		
Procedure ID	string			
Procedure Date	formatted date			
Species	Human (STY:T016)	required, though always human		
Age	decimal years			
Sex	M/F/u (SNOMED extended with "unkown")			
Race		Race, ethnicity, strain		
Height	meter			
Weight	killogram			
BMI	float (calculated localy from height and weight)			
Comorbidities and other clinical classifications	MEDRA, SNOMED CT or MeSH terms			
Type of Procedure	MEDRA, SNOMED CT or MeSH terms			
Indications for Procedure	MEDRA, SNOMED CT or MeSH terms			
Laterality	MEDRA, SNOMED CT or MeSH terms			
Tissue Type	MEDRA, SNOMED CT or MeSH terms			
Anatomical Landmark	MEDRA, SNOMED CT or MeSH terms			
Displacement from Landmark	Affine transformation matrix			

Discussion Points


Year 2 Plans

- Finalize metadata formats with input from the TMCs
- Unify data formats across TMCs' technologies
- Work closely with the CCF IU team to ensure data content and formatting is compatible with the needs and goals of the user interface.
- Work closely with TMCs to insure all anatomical scales are represented with ontology terms

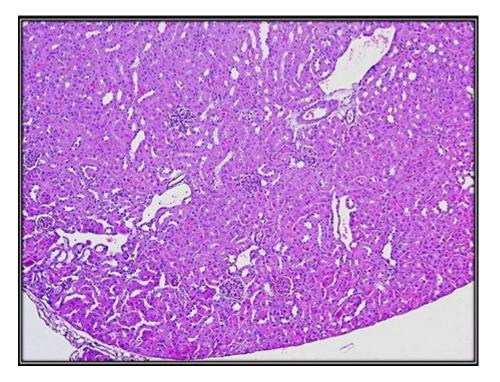
• Other TMC needs?

- Are there unmet needs?
- Any "must have" features or terms to describe your data?

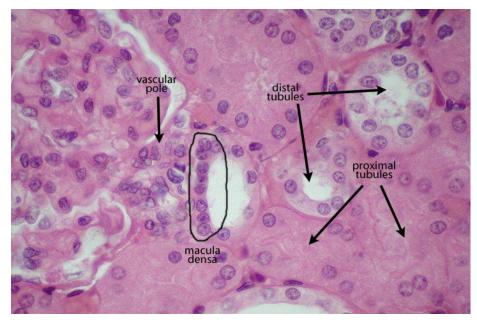
Extra reference materials

What is an ontology?

An ontology is a <u>particular</u> view of reality that encompasses a defined set of objects, processes and relationships within that reality.


"Ontological Commitment"

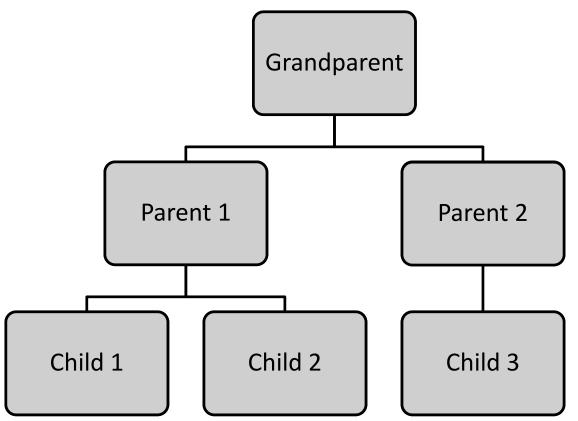
Controlled Vocabulary	Hierarchy of Terms (isA)	Full Ontology
Cell	1. Cell	1. Cell
Hepatocyte	a. Hepatocyte	a. Hepatocyte
Leukocyte	b. Leukocyte	b. Leukocyte
Organ	2. Organ	2. Organ
Heart	a. Heart	a. Heart
Liver	b. Liver	b. Liver + partOf


adjacentTo, containedIn, derivesFrom, definedBy, participatesIn, contributesTo, downStreamOf, ...

Annotating Images and Images containing identified (not just identifiable) things

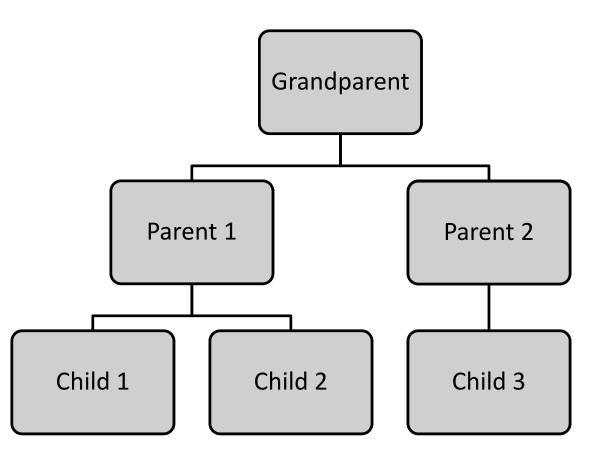
In the H&E stained kidney image below what regions (e.g., nephron, tubule, ...), cell types, cell states etc. are present? Regions must be annotated, presumably by the TMCs. It is not enough to simply say this image contains cell types X, Y and Z in cell states 1, 2, and 3:

This image has been annoted (though the regions aren't very clear):

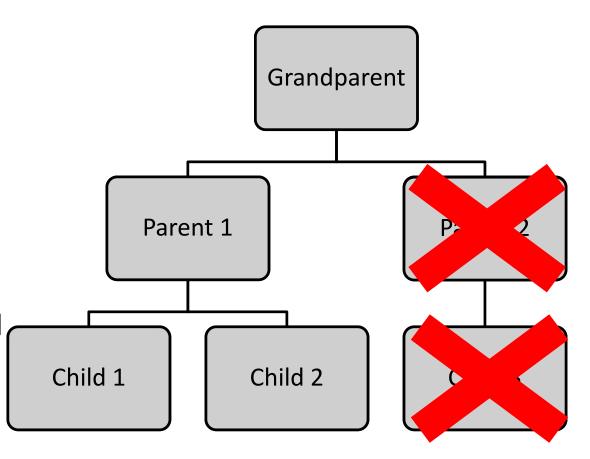


Solution: Multiple Slim Ontologies

- Gene Ontology (GO) is a massive ontology. Researchers didn't need the entire ontology, but only a subset of it.
- GO users create "slim" versions of GO:
 - Subsets that contained the terms needed along with the necessary ancestor and children terms
 - Can better illuminate the science of what is going on rather than being overwhelmed by too much information
- Terms in the main ontology can receive "slim" annotations, indicating their use in the corresponding "slim" ontology


Multiple Slim Ontologies to Main HuBMAP/CCF Ontology

- Instead of creating a single ontology file, we have software create the ontology based on the needed terms.
- We can ensure that we obtain all appropriate parent/child nodes are included


Multiple Slim Ontologies to Main HuBMAP/CCF Ontology

- We could specify for the main file we want nodes Parent 1 (from Ontology A) and Parent 2 (from Ontology B) and all their descendent nodes.
- We could specify we want nodes Children 1, 2, and 3 and all of their ancestor nodes.
- We could do a mix and still get the ontology.

Multiple Slim Ontologies to Main HuBMAP/CCF Ontology

- When viewing the ontology, we can easily eliminate extraneous terms for UI/navigation (e.g. eliminate Parent 2)
- When in a specific part of the body, certain terms could just disappear (e.g. eliminate Parent 2 and descendants)
- With a graph library, very easy to remove nodes or branches.

Pros/Cons of Multiple Slim Ontologies

Pros

- Ensures that we have the correct biology in the base ontology.
 - Lots of work already done by using pre-existing ontologies
- Can have slim ontologies for each zoom level, organ, or system
- As the base ontologies continue to update, new information propagates in
- Easy to add additional ontologies through crosswalks
- Elimination of some of the hand editing of ontologies

Cons

- Need to specify which versions of the input ontologies we are using
- Tracking of slim ontologies could become burdensome
- Lack of hand editing could make slim ontologies harder to use
- Hand editing could be replaced with code, but then additional coding effort is necessary
- Most of these cons are easily surmountable by using GitHub and using a triplestore repository like LungMAP did for its ontology

Dimensions of CCF Ontology

- Overall anatomical location
 - Heart aorta
- Cell line/type location
 - Endothelial cells
- Chemical location
 - Areas for positive staining for H&E

- Real data will have to be mapped into/annotated with the ontologies
- Some of this data will need to come from the experimental protocols (possible semantic integration with protocols.io ?) and some will likely come from Machine Learning