HuBMAP: The 1st Common Coordinate Framework Workshop (CCFWS-01)

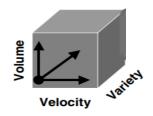
Integrative Ontology Development to Support Precision Medicine and Molecular Atlas Research

Yongqun "Oliver" He

University of Michigan Medical School Ann Arbor, MI 48109 USA

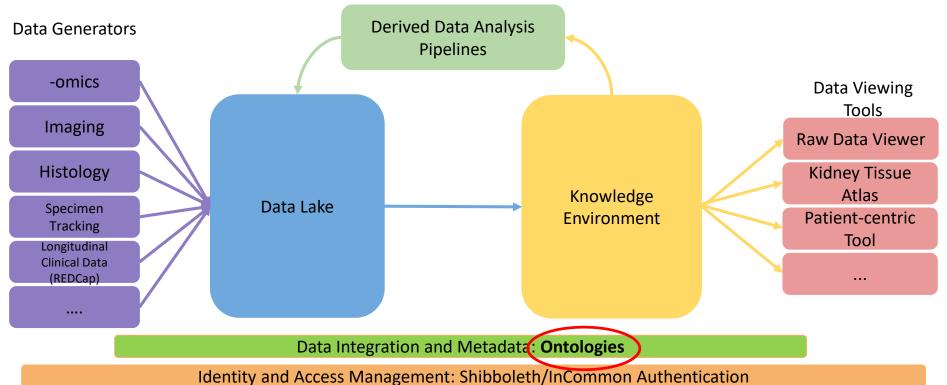
Ontology-based mechanistic classification of disease

Integrating the two streams of data (**clinical** and **basic** science observations) enables more refined and dynamic classification of disease across many data types


Citation: Haendel MA, Chute CG, Robinson PN. **Classification**, **Ontology, and Precision Medicine**. *N Engl J Med*. 2018 Oct 11; 379(15): 1452-1462.

KPMP, Kidney Research, and Ontology

- Initiated 2017, Kidney Precision Medicine Project (KPMP), funded by NIH-NIDDK, involves >20 institutes
- Goals:
 - Build a kidney tissue atlas that links *clinical* phenotypes, cells, *molecules*, pathways, and *pathology* together.
 - Understand and treat human kidney diseases Acute
 Kidney injury (AKI) and Chronic Kidney Disease (CKD)
- Big data challenges:
 - high volume, velocity, variety
 - Standardization, integration, sharing, and analysis
- Ontology is critical for solving the challenges



- Clinical
- Molecular
- Pathology

Ontology plays a critical role in KPMP

Two ontologies for KPMP

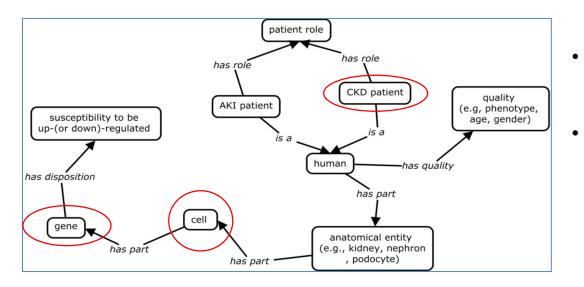
- Two community-based KPMP ontologies:
 - **KTAO: Kidney Tissue Atlas Ontology** It's more about <u>kidney knowledge</u>
 - OPMI: Ontology of Precision Medicine and Investigations Standardizes
 <u>data and metadata</u> types in and beyond KPMP.
 - Kidney-related info in OPMI is imported back to KTAO.
- Ontology development strategies
 - Follow Open Biomedical Ontology (OBO) principles: Openness, collaboration, etc.
 → >150 OBO library ontologies: non-redundant, interoperable
 - Reuse/align/integrate existing ontologies: UBERON anatomical entity, HPO (Human Phenotypes), GO, CL (Cells), OBI (Biomedical Investigations), ...
 - **Top-down**: align with top level ontologies
 - **Bottom-up**: address use cases. Community collaboration is important.

Ref: He Y, Xiang Z, Zheng J, Lin Y, Overton JA, Ong E. The **eXtensible ontology development (XOD)** principles and tool implementation to support ontology interoperability. *J Biomed Semantics*. 2018 Jan 12;9(1):3.

KTAO: Kidney Tissue Atlas Ontology

- KTAO GitHub website: <u>https://github.com/KPMP/KTAO</u>
- Deposited at:
 - BioPortal: <u>https://bioportal.bioontology.org/ontologies/KTAO</u>
 - Ontobee: <u>http://www.ontobee.org/ontology/KTAO</u>
- Statistics: includes >5000 terms.
- KTAO includes >250 kidney disease markers and their linkages to cells/diseases

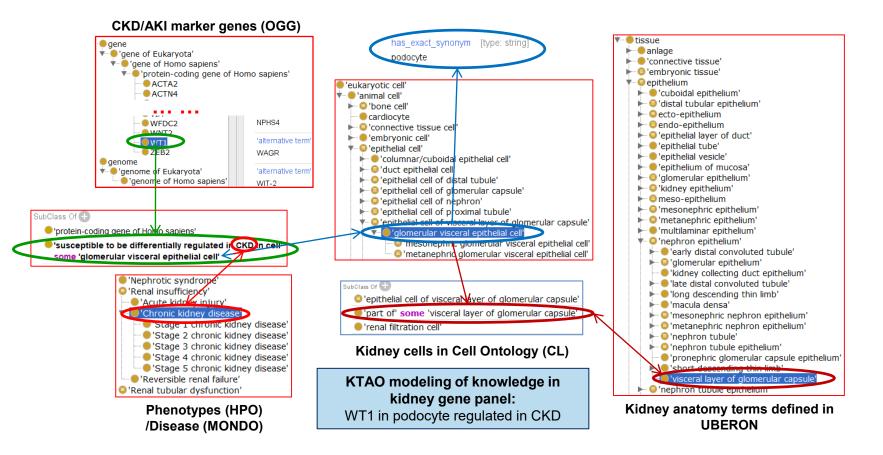
Question: how KTAO organizes these entities and link them?


Ref: He Y, Steck B, Ong E, Mariani L, Lienczewski C, Balis U, Kretzler M, Himmelfarb J, Bertram JF, Azeloglu E, Iyengar R, Hoshizaki D, Mooney SD, for the KPMP Consortium. **KTAO:** A kidney tissue atlas ontology to support community-based kidney knowledge base development and data integration (<u>http://ceur-ws.org/Vol-2285/ICBO_2018_paper_28.pdf</u>). *International Conference on Biomedical Ontology* 2018 (ICBO-2018), August 7-10, 2018, Corvallis, Oregon, USA. Pages 1-6.

Start with a simple case: Kidney panel gene marker example: WT1

- WT1: Wilm's tumour protein
- WT1 is a transcriptional factor required for podocyte development and homeostasis
- Our gene panel data indicates: WT1 gene is differentially regulated in podocytes of CKD patients
 WT1 is a CKD gene marker.
 - \rightarrow Up- or down-regulation may vary given conditions
- How to represent this and other knowledge in KTAO?

Reference: M. Kann, S. Ettou, Y. L. Jung, M. O. Lenz, M. E. Taglienti, P. J. Park, *et al.*, "Genome-Wide Analysis of Wilms' Tumor 1-Controlled Gene Expression in Podocytes Reveals Key Regulatory Mechanisms," *J Am Soc Nephrol*, vol. 26, pp. 2097-104, Sep 2015.


KTAO design pattern that links kidney-related entities

- Reuse/align ontologies for entities
- Generate and use *new relations* to link entities. Such relations often are not in existing ontologies.

Meanwhile, generate a new KTAO relation: 'susceptible to be differentially regulated in CKD in cell' → link a gene vs a cell where the gene (e.g., WT1) is susceptible to be differentially regulated in the cell (e.g., podocyte) of CKD patients

KTAO: Reuses and links UBERON (for anatomy), CL (for cell types), HPO (for phenotype), DP (for diseases), and OGG (for genes)

Usage demo: SPARQL query of KTAO knowledge

```
#Goal: To find gene markers regulated in podocytes of kidney patients
PREFIX podocyte: <http://purl.obolibrary.org/obo/CL 0000653>
SELECT distinct ?gene STR(?gene label) AS ?gene label ?r label "podocyte"
FROM <http://purl.obolibrary.org/obo/merged/KTAO>
WHERE
   ?gene rdfs:label ?gene label .
   ?r rdfs:label ?r label .
   ?gene rdfs:subClassOf ?gene restriction .
   ?gene restriction owl:onProperty ?r; owl:someValuesFrom podocyte: .
Output format Table
                        ▼ Max Rows 10 ▼
 Run Querv
             Reset
      Result Raw Request/Permalinks Raw Response
                                            gene label
                                                                               r label
                                                                                                              callret-3
                   gene
 http://purl.obolibrary.org/obo/OGG 300000301 ANXA1
                                                         "susceptible to be up-regulated in CKD in cell"@en
                                                                                                              podocyte
 http://purl.obolibrary.org/obo/OGG 3000001285 COL4A3
                                                         "susceptible to be up-regulated in CKD in cell"@en
                                                                                                              podocyte
 http://purl.obolibrary.org/obo/OGG_3000053405 CLIC5
                                                         "susceptible to be up-regulated in CKD in cell"@en
                                                                                                              podocyte
 http://purl.obolibrary.org/obo/OGG 3000004868 NPHS1
                                                         "susceptible to be up-regulated in CKD in cell"@en
                                                                                                              podocyte
 http://purl.obolibrary.org/obo/OGG 3000007490 WT1
                                                         "susceptible to be differentially regulated in CKD in cell"@en podocyte
```

A few lines of SPARQL query script identified 5 human genes in podocytes regulated in CKD patients

OPMI: Ontology of Precision Medicine and Investigation

- OPMI is an OBO library ontology
- Currently focuses on clinical data/metadata:
 O Clinical Case Report Forms (CRFs).
 - Clinical common data models (CDMs)
- Clinical factors affect Omics and imaging results:
 - o Mouse or cell model: not many
 - *Human*: likely hundreds → difficult to handle
 - o KPMP data are all *human* data
 - OPMI critical to capture clinical factors

	Gene		Exp. Cond. 1		Exp. Cond. 2		
	Gene 1		Value 11		Value 12		
	Gene 2		Value 21		Value 22		
Ge	Gene		Exp. Cond. 1		Exp. Cond. 2		cal or X
Ge	Gene 1		Value 11		Value 12		e 1x
Ge	Gene 2		Value 21		Value 22		e 2x

Clinical factors support gene expression data analysis

38 KPMP Case Report Forms (CRFs)

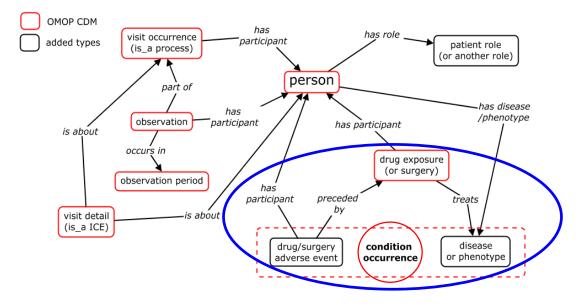
Screening and patient tracking	Enrollment	Pre-Biopsy	Biopsy	Post-Biopsy	Pathology ···
New Patient	Clinic reception	Pre-Biopsy	Kidney biopsy procedure details	Post biopsy	Dx image &
Eligibility	Demographic info	clinician		hospitalization	tissue QC
assessment	Medical history			Tissue tracking	Dx Core
Consent	Personal history			Tissue interrogation image/data upload	disease category
Contact info	Physical measure]		assignment
Participant study status	Biosample				Dx Core visual
Medications	collection	~3000 questions in these forms		Dx Core image scanning and upload	assessment
Adverse Event	Hospitalization				Interrogation
Auverse Event	PROMIS questionnaire			Patient follow-up	Core tissue QC
	Lab results				

KPMP Clinical Metadata Identified from CRFs

Metadata types	Metadata Examples		
Quality and measurements	Measurement protocol details (e.g., arm and stand/sit/lay position in blood pressure measurement)		
Health conditions	Comorbities, pregnancy, adverse events		
Medical interventions	drug medication, prior surgeries transplantation, dialysis, biopsy, transplantation		
Substances exposed to	Additional prescription drugs, recreation drugs, cigarettes, alcohols		
Socioeconomic factors	employment status, race, ethnicity, education, income, Insurance		
Environmental	county, state, country, hospital, primary care location		
Biosample	collection time, processing time, transportatoin tracking, biopsy location, storage location, storage time		
Patient reported outcomes	patient experience, life quality, pain, anxiety, complication, likert scale		
Patient study status tracking	pass or fail screening, whether informed consent signed, is active in study? is live?		
Electronic health record (EHR)	source of EHR, record availability, processing/harmonization method		

Clinical Common Data Models (CDMs) and OPMI

• Many clinical CDMs exist to support data standardization



- Observational Medical Outcomes Partnership (OMOP) CDM
 - Developed by OHDSI
 - >1 billion patient records
- Weak semantics, and interoperability among CDMs

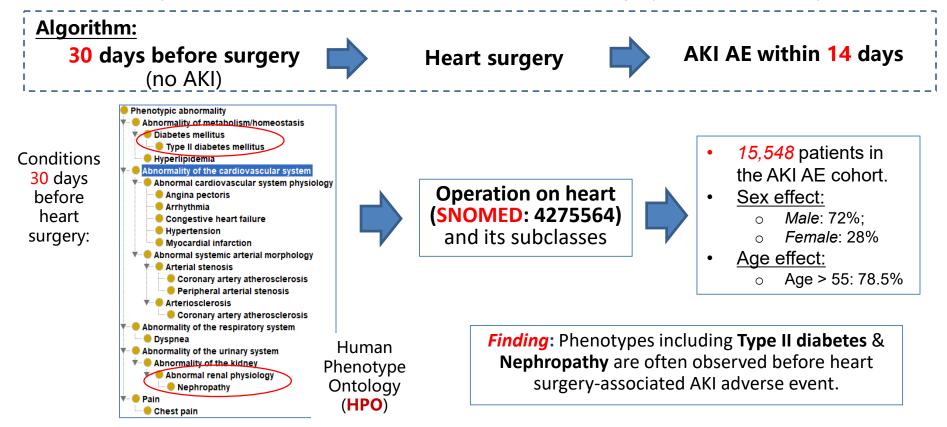
 Can OPMI help solve these issues?

OPMI to ontologize OMOP CDM

For example, OPMI modeling of *adverse event* (AE):

OMOP CDM:

 Do not differentiate different types of "condition occurrence", like AE and natural disease / phenotype.


OPMI modeling:

- AE always occurs after medical intervention, e.g., drug use, surgery.
- Support data analysis.

Citation: He Y, Ong E, Zheng J, Wan L, Schaub J, Kretzler M. Ontological representation of OMOP CDM using the OBO framework. 2018 OHDSI Symposium, Oct 12, 2018, Bethesda, MD, USA.

Heart surgery-associated Acute Kidney Injury (AKI) AE using IQVIA OHDSI/OMOP data

(Prior knowledge: incidence of AKI after heart surgery is up to 30-50%)

Summary

- KTAO standardizes all components of Kidney Atlas and their relations.
- OPMI standardizes data/metadata, and common data models (CDMs).

Discussion

V.	
¥	E.

- **Ongoing**: Ontology representation of clinical tissue interrogation, assays, pathology, molecular pathway, for advanced data integration.
- How the KPMP ontology research supports HubMAP (Human BioMolecular Atlas Program)?

Acknowledgements

University of Michigan

- Edison Ong
- Jennifer Schaub
- Ling Wan
- Becky Steck
- Ulysses Balis
- Matthias Kretzler

Univ. of Washington

- Sean Mooney
- Fred Dowd
- Christopher Park
- Jonathan Himmelfarb

Mount Sinai

Ravi Ulyengar

Cleveland Clinic

John O'Toole

Duke University

Laura Barisoni

Washington Univ.

• Sanjay Jain

IQVIA, UK

- Anastasios Siapos
- Christian Reich
- Sarah Seager

<u>NIH NIDDK</u>

- Deborah K. Hoshizaki
- Robert A. Star

Ontology/terminology community

- Chris Mungall (Lawrence Berkeley NL)
- Melissa Haendel (OHSU)
- Chris Stockert (UPenn)
- Jie Zheng (UPenn)
- Chunhua Weng (Columbia U.)
- Harold Solbrig (Mayo Clinic)
- Alexander Diehl (Univ. at Buffalo)
- Barry Smith (Univ. at Buffalo)
- Hong Yu (Guizhou Medical School)
- Peter Robinson (Jackson Lab)

KPMP Funding: NIH NIDDK U2C Project #: 1U2CDK114886-01