May 9, 2019 Indiana University Bloomington, Indiana



## Anatomical Ontologies How of them many do we need?

Olivier Bodenreider

National Institutes of Health, Bethesda, Maryland, USA



# Anatomical ontologies



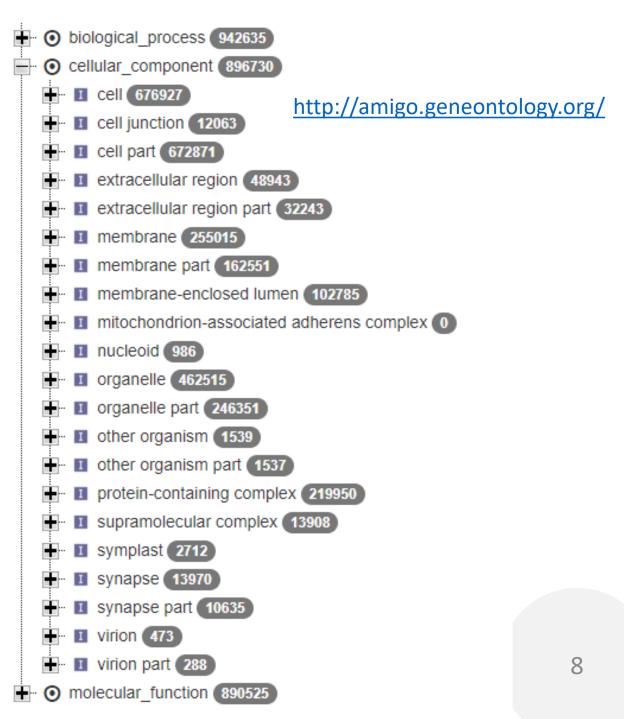


### **Coordinated evolution of ontologies**

| RELATION<br>TO TIME               | CONTINUANT                            |                                        |                                  |                                 | OCCURRENT                     |
|-----------------------------------|---------------------------------------|----------------------------------------|----------------------------------|---------------------------------|-------------------------------|
| GRANULARITY                       | INDEPENDENT                           |                                        | DEPENDENT                        |                                 |                               |
| ORGAN AND<br>ORGANISM             | Örganism<br>(NCBI<br>Taxonomy)        | Anatomical<br>Entity<br>(FMA,<br>CARO) | Organ<br>Function<br>(FMP, CPRO) | Phenotypic<br>Quality<br>(PaTO) | Biological<br>Process<br>(GO) |
| CELL AND<br>CELLULAR<br>COMPONENT | Cell<br>(CL)                          | Cellular<br>Component<br>(FMA, GO)     |                                  |                                 |                               |
| MOLECULE                          | Molecule<br>(ChEBI, SO,<br>RnaO, PrO) |                                        | Molecular Function<br>(GO)       |                                 | Molecular Process<br>(GO)     |

Open Biomedical Ontologies (OBO) Foundry (ca. 2004)
(Gene Ontology in yellow)



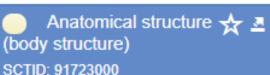



### Gene Ontology

- Cellular component hierarchy
- Cellular and subcellular level
- Supports the annotation of gene products in model organisms
- ~4200 classes
- Developed by the GO Consortium for over 20 years
- Public funding from NIH








#### SNOMED CT

- Largest clinical terminology in the world
- Developed by a consortium of over 40 countries
- Used for clinical documentation and analytics
- ~39,000 concepts
- Somewhat similar to FMA\*



Anatomical or acquired body structure (body structure)



91723000 | Anatomical structure (body structure)

en Anatomical structure

en Anatomical structure (body

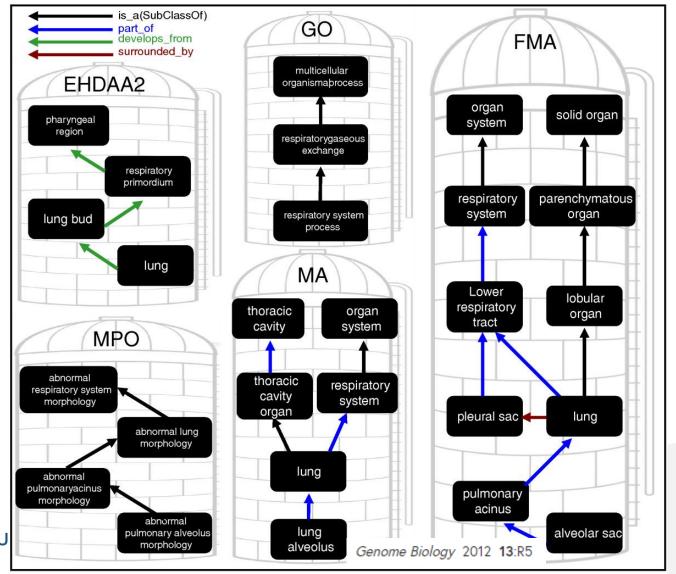
structure)

No attributes

https://browser.ihtsdotools.org/

#### Children (17)

- Anatomical junction (body structure)
- Anatomical space structure (body structure)
- Body organ structure (body structure)
- Body region structure (body structure)
- Body system structure (body structure)
- Body tissue structure (body structure)
- Body wall structure (body structure)
- Cell structure (cell structure)
- Developmental body structure (body structure)
- Entire physical anatomical entity (body structure)
- Gland structure (body structure)
- Intercellular anatomical structure (body structure)






## Uberon – Cross-species ontology

http://uberon.github.io/

- 15,000 classes
- Species-neutral presentation
- Links to species-centric anatomical ontologies
- Supports integration of model organism and human data







### Others

- General
  - Medical Subject Headings (MeSH) "A" tree
  - NCI Thesaurus
  - GALEN
  - [...]
- Specific species
  - Adult Mouse Anatomy (MGI)
  - Zebrafish Anatomy ontology
  - [...]



Body Regions [A01] •

Musculoskeletal System [A02] •

Digestive System [A03] •

Respiratory System [A04] •

Urogenital System [A05] •

Endocrine System [A06] •

Cardiovascular System [A07] •

Nervous System [A08] •

Sense Organs [A09] •

Tissues [A10] 3

Cells [A11] O

Fluids and Secretions [A12] 3

Animal Structures [A13] •

Stomatognathic System [A14] •

Hemic and Immune Systems [A15] •

Embryonic Structures [A16] •

Integumentary System [A17] •

Plant Structures [A18] •

Fungal Structures [A19] •

Bacterial Structures [A20] •

Viral Structures [A21] €





## How many do we need?





## Selection criteria for anatomical ontologies

- Human vs. other organisms
- Research vs. clinical
- Gross vs. cellular/subcellular

- And...
  - Who maintains it?
  - Regular updates?
  - Intellectual property restrictions?
  - Cross-references to other ontologies?

## Define use cases first!





## If you use more than one

- Terminology integration
  - Unified Medical Language System (UMLS)
    - Integrates FMA, MeSH anatomy, SNOMED CT anatomy, GO Cellular Location
  - BioPortal
- Lexical similarity vs. semantics
  - Prostate in human and mouse: same or different?
  - Different organs with similar functions across species (Uberon)





## If you develop a new one

- Ontology development is hard
  - Reuse existing ontologies whenever possible
  - Add cross-references to facilitate integration
  - Partner with ontologists



What is the difference between an ontology and a car?





