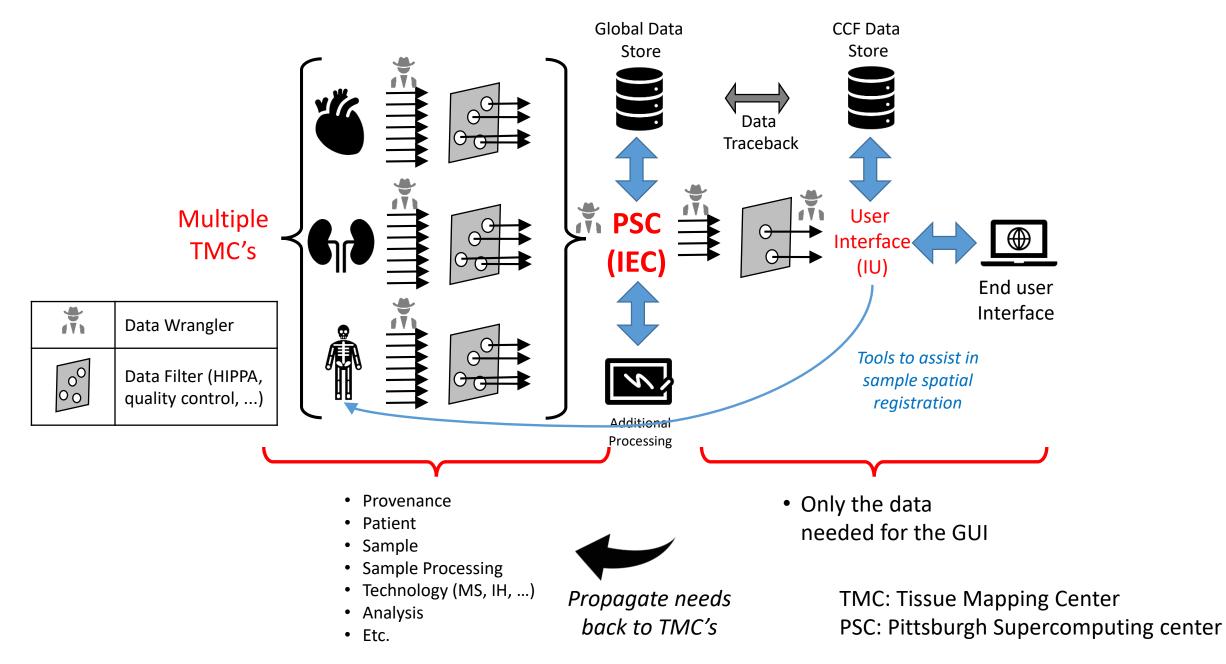
Multi-Level, Multi-Modal CCF UI for Data Providers and Users within the Human BioMolecular Atlas Program (HuBMAP)

MC-IU Team:

Katy Börner, Lisel Record, Bruce Herr II, Leonard Cross, Paul Macklin, Randy Heiland, Jim Sluka & Ellen Quardokus

Intelligent Systems Engineering, SICE, Indiana University, Bloomington, IN

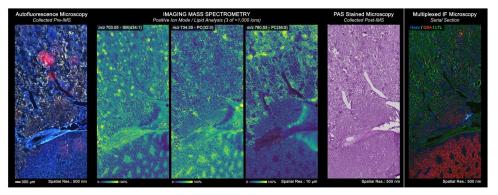

Griffin Weber, Harvard Medical School, Boston, MA

Samuel Friedman, Opto-Knowledge Systems, Inc.

Common Coordinate Framework (CCF) Workshop Indiana University, Bloomington *May 9, 2019*

Overview

- Data
- 3D Spatial Models Linked to Terminology/Ontology
- CCF Tissue Registration Interface (for Data Providers)
- CCF User Interface (for Data Users)
- Year 2 Plans
- Open Questions



CCF User Interface (UI) Tissue Registration UI CCF Data **Global Data** Environment & Harris Annum & Harris Hand Robert Store Store tealas and E. Cardels del merchilan Data Traceback Multiple PSC User 171 Interface TMC's (IEC) (IU) End user Interface * Data Wrangler Tools to assist in 0⁰ Data Filter (HIPPA, sample spatial quality control, ...) registration Additional Processing Provenance • Only the data • Patient needed for the GUI • Sample • Sample Processing • Technology (MS, IH, ...) *Propagate needs* TMC: Tissue Mapping Center • Analysis back to TMC's PSC: Pittsburgh Supercomputing center • Etc.

Data: Biological

Kidney: Jeff Spraggins et al., VU

See data on Globus, BIOMIC_patient-64354

Clinical and Spatial Metadata (21 rows)

Cell	Types,	on	right
------	--------	----	-------

Cell States (9 rows)

Cell states	Subset A
Proliferating cells	S-phase
	G2/M
Cell cyle arrest	G0
	G1/S
	G2/M
	G2/M

Cell type	Subset A	Subset B	Subset C
Tubular Epithelium	Proximal tubular cells	S1	
		S2	
		S3	
	Loop on Henle	Thin descending limg	
		Thin ascending limb	
		Thick limb	medullary
			cortical
		Macula Densa	
	Distal convoluted tubule		
	Connecting segment		
	Collecting duct	Principal cells	
		Intercalated cells	Type A
			Type B
Glomerulus	Epithelium	Visceral	
		Parietal	
	Mesangial cells		
Vasculature	Endothelium	Glomerular	
		Peritubular	
		Lymphatic	
	Pericytes		
	Juxta Glomerular Cells		
Interstitium	Fibroblasts	Myofibroblasts	
		EPO producing cells	
		Medullary fibroblasts	
	Mononuclear cells	Resident macrophages	
		Dendritic cells	
	Lymphocytes	T cells	
		B cells	
		NK cells	

Heart: Shin Lin, UW

Year 1: Tissue data for 1-2cm cubed volumes from 9 sites for 1 heart from 1 individual.

Data Dictionary (115 rows)

Field # Sort Field Label Sort	Field Name Sort	Field Units Fie	eld Data	Lookup Tal	Low Value	ligh Value	Valid val	lue IsNullable !	Parent Fiel Pa	arent Fiel	Can Child b	ReadOnly So	ort
9 Donor //ABO:	abo	ch	ar(3)	lkup_abo				TRUE				FALSE	
10 Donor //Date of birth:	dob	da	tetime					TRUE				FALSE	
11 Donor //Gender:	gender	ch	ar(1)	lkup_gende	er		M,F	TRUE				FALSE	
12 Details //Age:	age_in_months	sm	nallint		0	1188		TRUE			FALSE	FALSE	
13 Details //Age Unit:	age_unit	ch	ar(1)	lkup_age_u	unit		M,Y	TRUE	age_in_mont	hs		TRUE	
14 Details //Height:	hgt_cm	cm de	cimal(5,	2)	1	241.3		TRUE				FALSE	
15 Donor hgt_ft //	hgt_ft	ft int			0	7		TRUE				TRUE	
16 Donor hgt_in //	hgt_in	in int			0	11		TRUE				TRUE	
17 Details //Weight:	wgt_kg	kg de	cimal(7,	4)	0.454	294.835		TRUE				FALSE	
18 Donor wgt_lb //	wgt_lb	lbs de	cimal(3,	0)	2	650		TRUE				TRUE	
19 Donor //Ethnicity/race:	race	big	gint	lkup_race_	subcat_mult	i		FALSE				FALSE	
30 Details //History of diab	e hist_diabetes	sm	nallint	lkup_histdi	ab_dur			TRUE				FALSE	
31 Donor //History of cano	e hist_cancer	sm	nallint	lkup_histca	ncer_site			TRUE			FALSE	FALSE	
32 Donor History of cancer	r,cancer_oth_ostxt	va	rchar(50))	1	50		TRUE	hist_cance	999		FALSE	
33 Details //History of hyp	er hypertension	sm	nallint	lkup_histhy	/pe_dur			TRUE			FALSE	FALSE	

Cell Types (14)

endothelial cells

	arterial
	capillary
	venous
	lymphatic
cardiomyo	cytes
	atrial
	ventricular
	nodal
fibroblasts	
	fibroblasts
	myofibroblasts
immune ce	ells
	macrophages

Data: Clinical

Kidney: Jeff Spraggins et al., VU

Clinical and Spatial Metadata (21 rows)

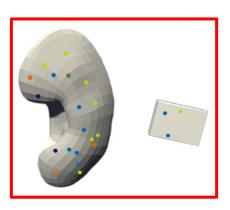
Sample Number:	20
Patient Number:	64354
Procedure ID:	66598
Date:	1/30/2019
Age:	38
Gender:	Female
Race:	White
Height:	165.1 cm
Weight:	115.2 kg
BMI:	42.3
Comorbidities:	Obesity
Type of Procedure:	Total Nephrectomy
Indications for Procedure:	Renal tumor
Laterality:	Left
Tissue Type:	kidney
Dimensions (mm):	L: 19 x W: 13 x H: 7
Anatomical Landmark:	Lower Pole
Distance from Tumor:	7 cm
Sample Processing:	Frozen
Method of Freezing:	Dry Ice/Isopentane Slurry
Embedding Media:	CMC

Heart: Shin Lin, UW

Data Dictionary (115 rows)

Field # Sort Field Label Sort	Field Name Sort	Field Units	Field Data	Lookup Ta	Low Value	High Value	Valid value
9 Donor //ABO:	abo		char(3)	lkup_abo			
10 Donor //Date of birth:	dob		datetime				
11 Donor //Gender:	gender		char(1)	lkup_gend	er		M,F
12 Details //Age:	age_in_months		smallint		0	1188	
13 Details //Age Unit:	age_unit		char(1)	lkup_age_	unit		M,Y
14 Details //Height:	hgt_cm	cm	decimal(5,	2)	1	241.3	
15 Donor hgt_ft //	hgt_ft	ft	int		0	7	
16 Donor hgt_in //	hgt_in	in	int		0	11	
17 Details //Weight:	wgt_kg	kg	decimal(7,	4)	0.454	294.835	
18 Donor wgt_lb //	wgt_lb	lbs	decimal(3,	0)	2	650	
19 Donor //Ethnicity/race:	race		bigint	lkup_race_	_subcat_mu	lti	
30 Details //History of diabe	hist_diabetes		smallint	lkup_histd	iab_dur		
31 Donor //History of cance	hist_cancer		smallint	lkup_histc	ancer_site		
32 Donor History of cancer ,	cancer_oth_ostxt		varchar(50))	1	50	
33 Details //History of hyper	hypertension		smallint	lkup_histh	ype_dur		

Data: CCF Minimum Information Standard


A hubmapconsortium / ccf-data-wiki	O Unwatch → 3	🖈 Star	0 % Fork 0				
<> Code ① Issues 0 ① Pull requests	0 🗉 Wiki	Insights					
Home					Edit New Page		
Bruce Herr II edited this page 2 days ago · 5 revisions							

Welcome to the CCF Data Wiki!

Organ	CalTech	UCSD	Stanford	Vanderbilt	Florida
Heart	\checkmark				
Kidney		\checkmark		\checkmark	
Bowel			\checkmark		
Thymus					\checkmark
Spleen					\checkmark
Lymph Nodes					\checkmark
Lung		\checkmark			
Bladder		×			
Colon			×		

Links • Home Templates • TMC-Organ-Template Clone this wiki locally https://github.com/hubmapcc

Pages 12

https://github.com/hubmapconsortium/ccf-data-wiki/wiki

Legend:

- \checkmark Organ proposed and survey submitted
- $\bullet\,$ × Organ was proposed, but no survey has been submitted

Data: TMCs x Organs x Data Types x Technologies

BUKMAP, Zhang Group

Organs (10)	Dat	a Types (13)	Technologies (~25)
1. Bladder	1.	Imaging - Proteins	CODEX;DART-FISHrp;IF;IHC;LRET-IF;MALDI Imaging MS;PER-DEI
2. Blood Vessel (Heart)	2.	Imaging - RNA	DART-FISH;LRET-ISH;MERFISH;PER-DEI;seqFISH;smFISH
3. Breast	3.	Imaging - DNA	PER-DEI
4. Colon	4.	Imaging - Other	Lipid and Metabolite MALDI Imaging MS
5. Kidney	5.	scRNAseq	snDropseq;scRNAseq
6. Liver	6.	scDNAseq	scATACseq;scTHSseq;SNAREseq
7. Lung	7.	scProteomics	IMC
8. Spleen	8.	bulk-Proteomics	LC-MS/MS
9. Thymus	9.	bulk-RNA	?
10. Tonsil	10.	bulk-DNA	?
	11.	Metabolomics	LC-MS/MS;nano-POTS
No Bone Marrow	12.	Lipids	LC-MS/MS;nano-DESI
and Pancreas.	13.	Other	Autofluorescence; PAS stained microscopy

3D Spatial Models of Organs - Individual Differences

7

6

300

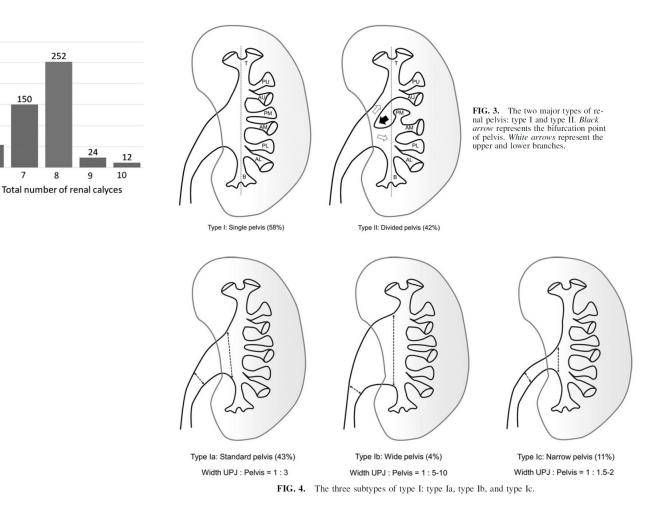
250 200

Kidney

100

50

0

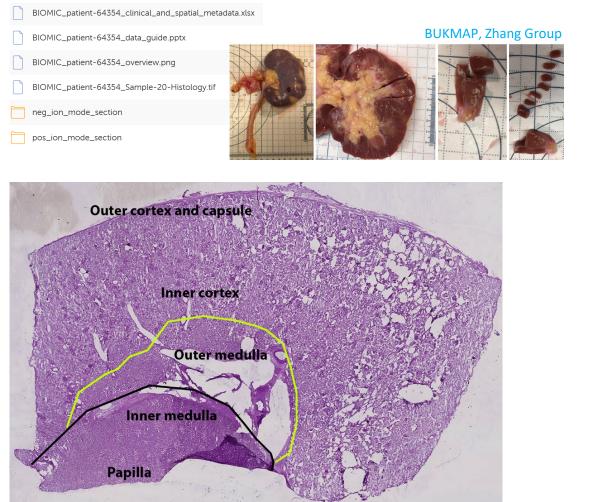

Example: Kidney

Takazawa et al. analyzed a total of 492 kidneys to identify differences across individuals.

Within HuBMAP, we need to decide what level of detail is required to serve HuBMAP data use cases.

In Year 2, we plan to

- Work closely with TMCs to identify and review existing literature on organ specific individual differences—across sex, ethnicity, age groups, etc.
- Compile recommendations on how to represent individual differences.

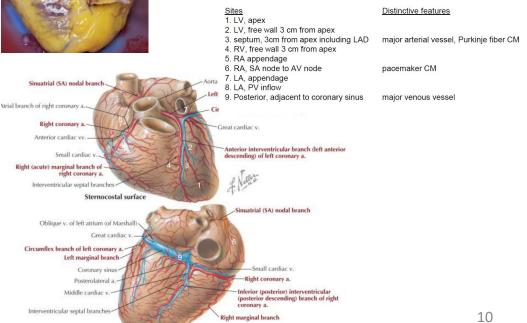


Takazawa et al. (2018) Proposal for a Simple Anatomical Classification of the Pelvicaliceal System for Endoscopic Surgery. JOURNAL OF ENDOUROLOGY, 32:8, 753-758.

3D Spatial Models interlinked with terminology/ontology

Kidney: Jeff Spraggins et al., VU

See data on Globus, BIOMIC_patient-64354


Heart: Shin Lin, UW

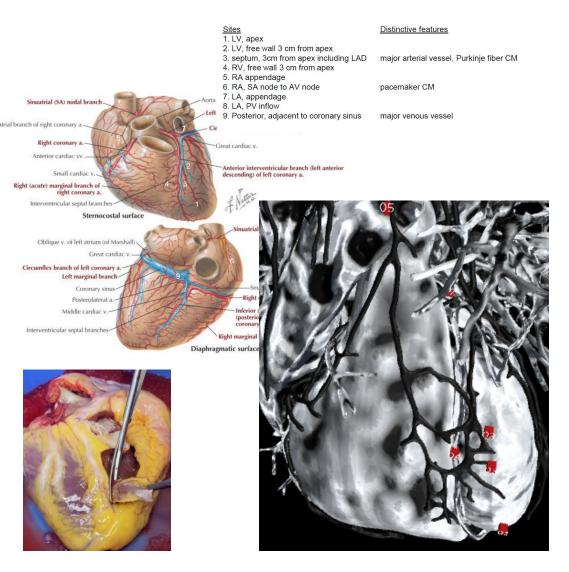
Year 1: Tissue data for 1-2cm cubed volumes from 9 sites for 1 heart from 1 individual.

Terminology; Coordinates and photos to spatialize

Diaphragmatic surface

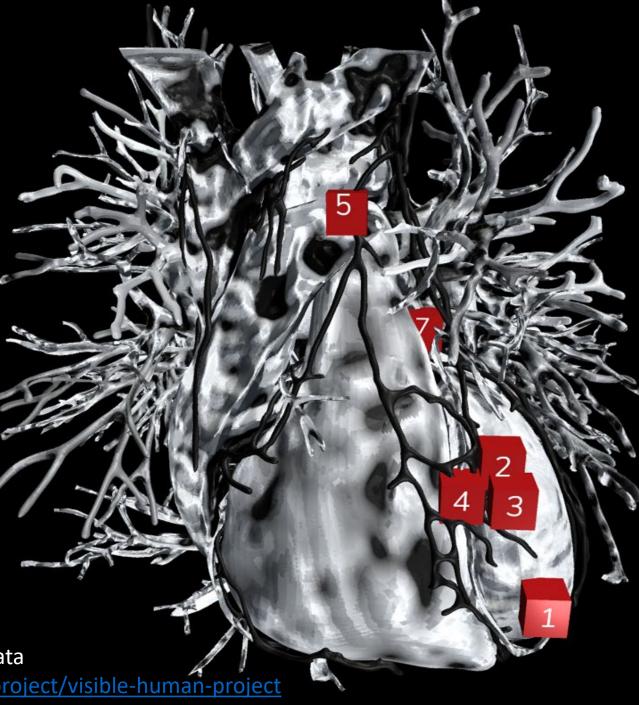
3D Spatial Models interlinked with terminology/ontology

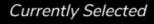
Align 9 tissue samples in 3D heart using a combi of

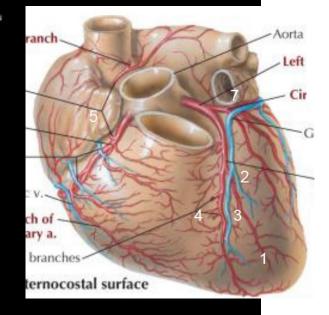

- Rough placement using human expertise/3D pattern matching and
- Fine adjustments using machine learning

Virtual tissue samples will be sized 1-2cm cubed, numbered (1 ... 9), and oriented (left-right, top and bottom tissue slice of z-stack).

Measure error from

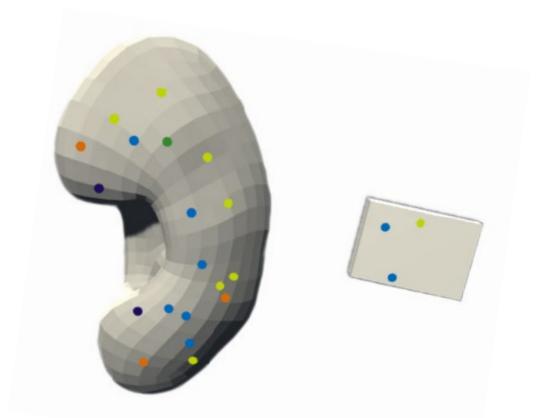

- precision of tissue sample procurement and
- placement in the 3D browser


We hypothesize that placement accuracy will improve when additional information (e.g., landmarks, major scaffolds, MR/CT scan of heart after 9 samples were extracted) is being visible in virtual organ.


Human heart with data overlay Developer: Andreas Bueckle

- Show/hide
- ✓ Coronary arteries
- Coronary veins
- Left atrium
- Left ventricle
- Right atrium
- Right ventricle
- Markers
- Adjust camera speed

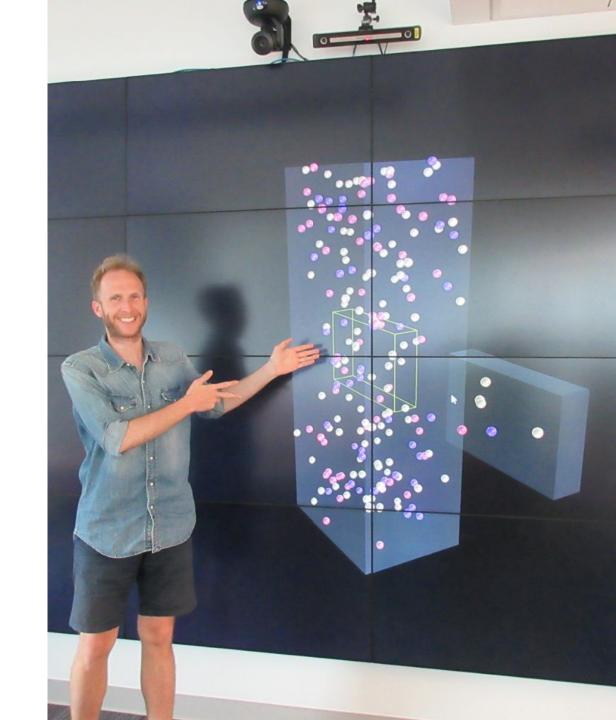
Please click any of the red markers!



Heart model from NLM3D Data

https://lhncbc.nlm.nih.gov/project/visible-human-project

CCF Tissue Registration Interface


- Exploit human pattern recognition and fine motor skills (by surgeons) to register tissue in organs.
- Add info on anatomical landmarks, cell types, molecular data to support alignment.
- LATER: Use human alignment data as training data for machine learning algorithms, to better support manual alignment OR to possibly fully automatize alignment.

Kidney model from NLM3D Data <u>https://lhncbc.nlm.nih.gov/project/visible-human-project</u>

CCF Tissue Registration Interface

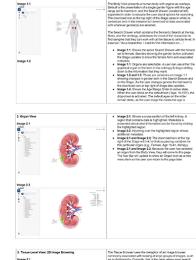
- Exploit human pattern recognition and fine motor skills (by surgeons) to register tissue in organs.
- Add info on anatomical landmarks, cell types, molecular data to support alignment.
- LATER: Use human alignment data as training data for machine learning algorithms, to better support manual alignment OR to possibly fully automatize alignment.

CCF User Interface (UI) Tissue Registration UI CCF Data **Global Data** Environment & Harris Annum & Harris Hand Robert Store Store tealas and E. Cardels del merchilan Data Traceback Multiple PSC User 171 Interface TMC's (IEC) (IU) End user Interface * Data Wrangler Tools to assist in 0⁰ Data Filter (HIPPA, sample spatial quality control, ...) registration Additional Processing Provenance • Only the data • Patient needed for the GUI • Sample • Sample Processing • Technology (MS, IH, ...) *Propagate needs* TMC: Tissue Mapping Center • Analysis back to TMC's PSC: Pittsburgh Supercomputing center • Etc.

CCF User Interface for <u>semantic</u> + <u>spatial</u> search, filter, review, download

CCF UI Spec v0.5.0 v2 (Initial Writeup) https://tinyurl.com/y4ywy95t

The initial 'user story' features a researcher interested to search for, filter out, review, and download biomolecular data in the context of the whole human body or in spatial relationship to specific organ(s), tissues, or cell types. The researcher is also able to learn more about how the data was acquired, to connect with data authors, and to submit questions and comments on the CCF UI.

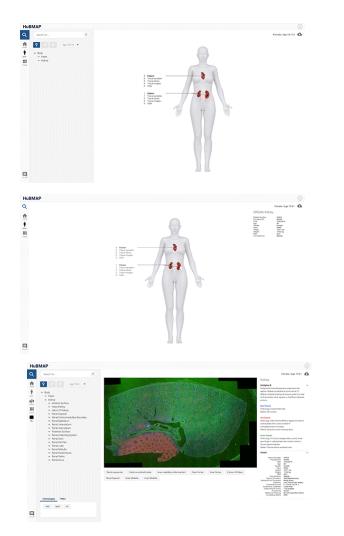

Consequently, the UI will support

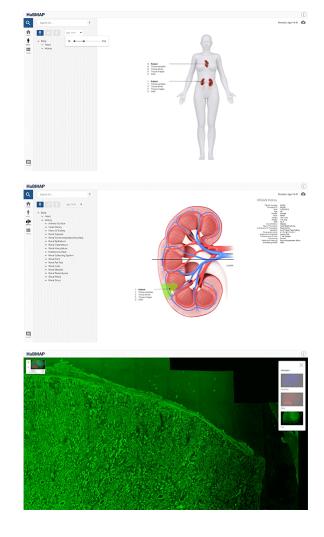
- Search (ontology supported search) and filter by ontology, anatomy, and metadata
- Visual browsing of tissue samples and metadata at the whole body, organ, tissue, and cell level
- Connect with data authors to inquire about technology details.
- Data download at the whole body, organ, tissue, and cell level.
- Submit questions and comments on the CCF UI.

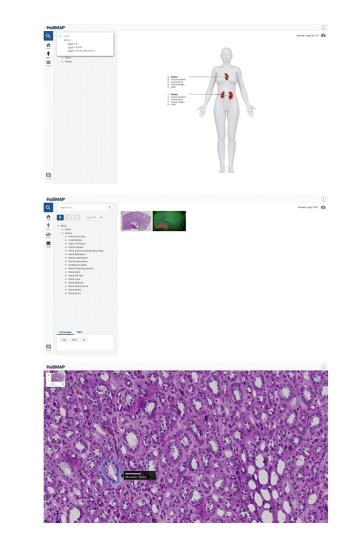
In the initial 9m, proof of concept versions of the whole body, organ, tissue and cell level views will be implemented.

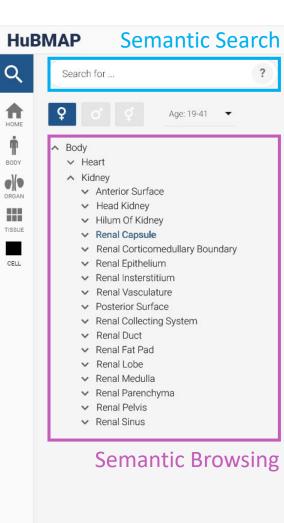
The github repo is at: <u>https://github.com/hubmapconsortium/ccf-ui</u>

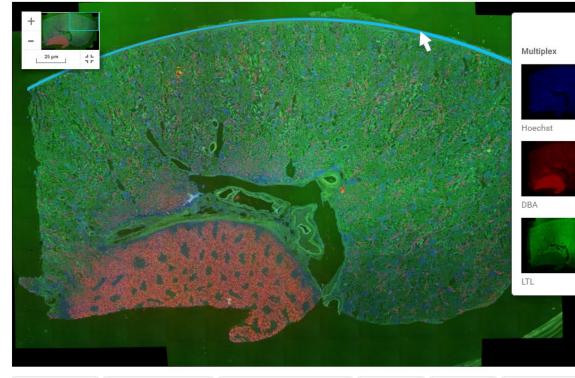
The deployed release build after 6w of development is at: <u>https://hubmapconsortium.github.io/ccf-ui/</u>








CCF User Interface for <u>semantic</u> + <u>spatial</u> search, filter, review, download


CCF UI Spec v0.5.0 interface mockups (PDF) <u>https://tinyurl.com/y2d43zds</u>

Outer Cortex

Inner Cortex

Cortex of Kidney

g	Renal corpuscule	Distal convol	uted tubule	Inner medullary collecting duct
	Renal Capsule	Outer Medulla	Inner Medu	Illa

Kidney

Multiplex IF

Multiplexed immunofluorescence experiment that applies 4 different antibodies at a time and do 10 different antibody binding and removal cycles for a total of 40 antibodies which equates to 40 different detected proteins.

Blue Channel

Technology: Hoechst DNA stain Marker: Cell nucleus

Red Channel

Technology: DBA (Dolichos Biflorus Agglutinin) binds to carbohydrates that contain a-linked Nacetylgalactosamine residues Marker: General for renal collecting ducts.

Green Channel

Technology: LTO (Lotus tetragonolobus Lectin) binds specifically to carbohydrates that contain α-linked Lfucose oligosaccharides Marker: Proximal tubule expithelial cells

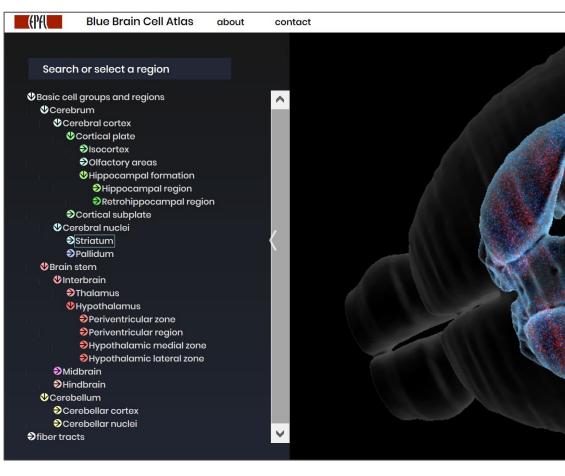
Details	
---------	--

Ĩ.

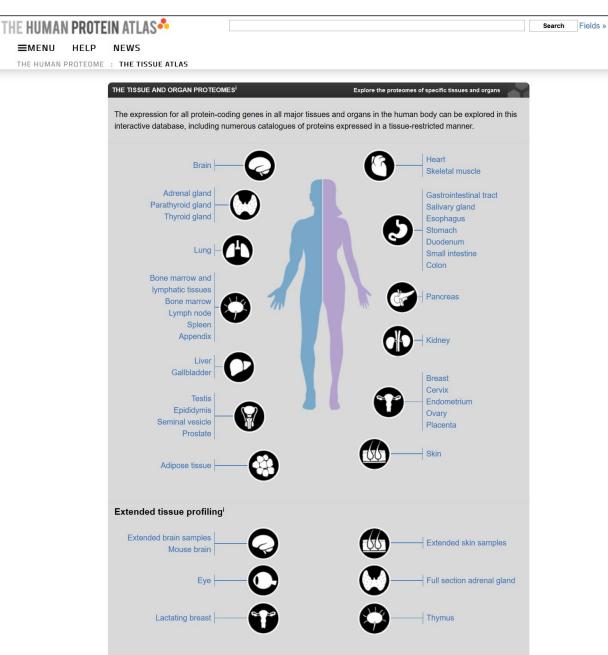
 \sim

Female | Age 19-41

Patient Number:	64354
Procedure ID:	66598
Date:	1/30/2019
Age:	38
Gender:	Female
Race:	White
Height:	165.1 cm
Weight:	115.2 kg
BMI:	42.3
Comorbidities:	Obesity
Type of Procedure:	Total Nephrectomy
Indications for Procedure:	Renal tumor
Laterality:	Lest Tissue Type: kidney
Dimensions (mm):	L: 19 x W: 13 x H: 7
Anatomical Landmark:	Lower Pole
Distance from Tumor:	7 cm Sample
Processing:	Frozen
Method of Freezing:	Dry ice/Isopentane Slurry
Embedding Media:	CMC


Semantic Filters

?



Commen

Prior Work

https://bbp.epfl.ch/nexus/cell-atlas

https://www.proteinatlas.org/humanproteome/tissue

Year 2 Plans (June 21, 2019 - June 20, 2020)

- Develop, test, optimize different **Tissue Registration UI**, optimized for HuBMAP organs.
- Evaluate and enhance functionality of CCF User Interface (UI).
- Use the CCF UI to serve a Kidney Micro Atlas.
- Run user studies for CCF and Registration UI.
- Research and develop a Visual Human Massive Open Online Course (VHMOOC) hat helps communicate the
 - quality and coverage of HuBMAP data,
 - utility and proper usage of CCF UI and HuBMAP tools, and
 - demonstrate new single-cell analysis and mapping techniques.
- Host another **CCF Workshop** in collaboration with NYGC in DC.

Open Questions

- What datasets (in what unified formats) will become available when? Which will be included in first HuBMAP data release in summer 2020?
- What tasks do existing ontologies perform well? Where do they fall short (e.g., uncertainty, variability).
- What tasks do existing user interfaces perform well? Where do they fall short?